2.5 million NSF grant to better convert water into clean hydrogen fuel using sunlight

Researchers at The University of Texas at Austin have received about $2.5 million to identify new materials that will efficiently absorb sunlight and split water (H2O) into clean hydrogen fuel, which could power cars and be used to generate electricity.

For the next three years, chemical engineering Professor Charles Mullins, chemistry Professor Allen Bard and mathematics Professor Irene M. Gamba will collaborate on the endeavor, which encompasses two grants from the National Science Foundation ($1.4 million) and the U.S. Department of Energy (about $1.1 million). Bard and Mullins are affiliated with the Center for Electrochemistry at the university.

The center is a multi-faculty collaboration devoted to research on fundamental and applied aspects of electrochemistry, which has already received research support for work on electrochemical energy sources such as batteries and fuel cells, solar energy research and new materials.

“Sustainable energy ultimately will involve the conversion of solar energy economically and efficiently to chemical fuels and electricity.” Bard said. “Our work focuses on discovering new materials for this and obtaining a better understanding of how their composition and structure govern their behavior.”
Mullins added, “The grants will fund us to explore finding new materials that will efficiently absorb sunlight and drive chemical reactions to break water into hydrogen (a fuel) and oxygen. These materials also need to be cheap and composed of elements that are abundant.”

The researchers will be examining novel metal oxides (variations of more common ones like titanium dioxide and iron oxide), which can act as semiconductors.



Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s